Homogeneous Linear Differential Equations

- Second-Order Linear Homogeneous Differential Equation
 - Take the form y''+P(x)y'+Q(x)y=0
 - General solution takes the form $y = c_1 y_1 + c_2 y_2$
 - How to solve:
 - Find two distinct, linearly independent solutions (i.e. y₁ and y₂ are not linear multiples of each other there exist no constants c₁ and c₂ such that c₁y₁ = c₂y₂).
 - Apply superposition: $y = c_1 y_1 + c_2 y_2$
 - If P(x) and Q(x) are constant, then use characteristic equation method (next page).
 - Apply these same principles to higher order linear homogeneous differential equations
 - An IVP involving a second-order differential equation requires two initial conditions (i.e. $y(x_o) = A$ and $y'(x_o) = B$).
 - To solve this IVP, substitute in the initial conditions and solve for c_1 and c_2
 - Existence/Uniqueness: Let P(x) and Q(x) be continuous on an interval $I \subseteq \mathbb{R}$. Then for some $x_o \in I$, the IVP y''+P(x)y'+Q(x)y=0, $y(x_o) = A$, $y'(x_o) = B$ has exactly one solution.
 - Can be used to prove that the general solution is $y = c_1y_1 + c_2y_2$.
- An *n*th-order homogeneous linear differential equation takes the form

 $y^{(n)} + A(x)y^{(n-1)} + \dots + P(x)y' + Q(x)y = 0.$

- Has exactly n linearly independent solutions, each of which is not a superposition of other solutions
- General solution takes the form $y = c_1y_1 + c_2y_2 + ... + c_ny_n$ (application of superposition)
- How to solve:
 - Find *n* distinct, linearly independent solutions, each of which is not a superposition of other solutions
 - Apply superposition: $y = c_1y_1 + c_2y_2 + \dots + c_ny_n$
 - If the coefficients of the differential equation are constant, then use a characteristic equation. This process is the same as for second-order equations, as shown on the next page.
- An IVP involving an *n*th-order differential equation requires *n* initial conditions e.g. $y^{(n)}(0) = A$, $y^{(n-1)}(0) = B$,..., $y(0) = y_o$.
 - To solve this IVP, just substitute in the initial conditions and solve for the constants using a systems of equations.